
phases, respectively; Cli, initial concentration in liquid phase at bed input, kg/m~; C~li, 
dimensionless concentration in liquid phase at bed input; D e , mass conductivity, m27sec; 
De0 , initial mass conductivity, m2/sec~ ' Ds longitudinal diffusion coefficient, mg/sec; k, 
mass transfer coefficient, m/sec; L, bed length in column, m; x, spatial coordinate in grain, 
m; R, particle size, m; S, column section, m2; T, parameter taking into account particle 
shape; V0, liquid volume in reservoir, m3; Vz, liquid phase velocity in the total column 
section, m/sec; z, spatial coordinate in bed, m; Z, dimensionless spatial coordinate in bed; 
~, ratio of the amount of the extracted component in solid phase to flow rate of liquid phase, 
kg/(m3/sec); e, bed porosity, m3/m3; ez, internal porosity of grain, m3/m3; ~, time, sec; 
�9 ', dimensionless time; ~, dimensionless spatial coordinate in grain; $, hydromodulus, mS/kg; 
Bi, Biot number; Pc, Peclet number; w, 6, dimensionless parameters. 
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LIQUID AND GAS FILTRATION IN A TWO-LAYER POROUS MATERIAL 

V. A. Balashov and N. V. Tyabin UDC 532.546 

A velocity distribution is obtained for a filtration boundary layer near an 
impermeable wall and near the boundary between two porous layers with differ- 
ing permeabilities. 

Increases in the efficiency of technological processes taking place in porous materials 
and improvements in apparatus and equipment which use such materials is to a great extent 
controlled by the need for deeper more detailed studies of the hydrodynamic structure of 
liquid and gas flows in porous media. One of the unique features of filtration flows which 
exist in various industrial equipment is that they are often realized under conditions such 
that the microgeometry of the porous medium, as defined by the size of pores or grainy ma- 
terial particles is comparable to the geometric dimensions of the porous layer itself. In 
this case, hydrodynamic effects which develop in filtration flow of liquids and gases along 
the surface of contact of porous materials with another permeable material or an impermeable 
wall become significant. 
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51, No. 4, pp. 542-555, October, 1986. Original article submitted August 12, 1985. 
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Fig. i. Filtration flow in two-layer porous material. 

Fig. 2. Filtration flow parameter vs modulus of dimensionless co- 
ordinate. 

Theoretical calculations of the motion of an incompressible liquid in a grainy layer 
with discontinuous change in permeability [i] and an analysis of liquid flow in a tube filled 
with a granular material having increased permeability near the wall [2]indicate the exis- 
tence in the region near the boundary between two layers with differing permeabilities of a 
hydrodynamic boundary filtration layer, within the limits of which smooth merger of the velo- 
city fields of the adjacent filtration flows occurs. Experimental studies have also con- 
firmed the physical reality of such a filtration boundary layer [i]. However, no equations 
which would permit evaluating the thickness of such a layer or the character of its change 
are available at present. Such equations would be useful, for example, in solving questions 
of scale transition in designing heat- and mass,exchange equipment in the chemical and power 
industries, for analyzing the effect of hydrodynamics on the course of catalytic processes 
in reactors with a grainy layer, for calculation of special layered filters, and a number 
of other instances. 

We will study filtration flow in a two-layer porous material. We consider steady-state 
filtration of an incompressible liquid along the extended planar boundary of two layers with 
differing permeabilities. Within the limits of each layer, let the porous structure of the 
layer be isotropic, with a discontinuous change on the boundary, while the first layer has 
the higher permittivity, k I > k 2. 

We introduce a rectangular coordinate system z-x, as shown in Fig. i. The x axis lies 
on the boundary between the layers and is directed along the filtration flow, while the z 
axis is directed such that for the first layer z [ 0, and for the second, z ! 0. 

At a sufficient distance from the boundary, the filtration velocity in each layer is 
defined by Darcy's law as 

k~ Op 
vx~ . . . .  , ( 1 ) 

where i = i, 2 indicate the number of the layer. 

Momentum exchange between the filtration flows leads to braking of the flow in the more 
permeable layer and acceleration of the flow in the layer with lower permeability, as a 
result of which, within the limits of the boundary zone one can expect smooth merger of the 
velocity fields of the flows in the neighboring layers, so the velocity field of he filtra- 
tion flow will appear as shown in Fig. i. The analysis of the hydrodynamic situation in the 
boundary region reduces to study of a plane-parallel filtration flow Vxi = Vxi(Z), for which 
we obtain from the known equations of motion of a filtration flow [3, 4] 

a~vx~ a-!P + ---~ v~ -- p~ - -  = O. (2) 
Ox k~ Oz ~ 

With sufficient removal from the boundary between the layers the filtration velocity 
is equal to that.given by Darcy's law, Eq. (i), and we can then say that 

av~1 :0 as z-+~ ands: 0 as Z-+--oo. (3) 
Oz Oz 

Upon t r a n s i t i o n  t h r o u g h  t h e  b o u n d a r y  t h e  a v e r a g e  f i l t r a t i o n  v e l o c i t y  mus t  be  c o n t i n u o u s  
and tangent stresses in the flow must be equal, so for z = 0 we write 
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Fig. 3. Filtration boundary-layer 
thickness 6 (mm) vs permeability 
k (m 2) for various ratios of ap- 
parent and physical viscosities of 
liquid being filtered: i) ~f/~ = 
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OVxl OVz2 
Vxl = Vxs and [If1 0Z --  ~'f,2 0Z ( 4 )  

Introducing dimensionless velocity and coordinate with the expressions 
-- z 

-- Vxi and Zi ~ ~ , 

vx~ = ki Op 1 /  

where z ~ 0 for i = i and z ~ 0 for i = 2, then solving Eq. (2) with conditions (3), (4), 
we obtain an equation for determination of the filtration velocity in the neighboring layers, 
which can be written in dimensionless form as 

where 
v=, = 1 + a, e x p [ ( - -  1)~z,], (5) 

(-- 1)* (k~ - -  k~) 

[ ] 
> f i  

Because of the condition of equality of the average filtration velocities on the bound- 
ary, the condition 

Vxl k2 

Ux2 kl 

must be satisfied, while with removal from the boundary the magnitude of the dimensionless 
filtration velocity quite rapidly approaches unity. 

According to Eq. (5), we may write 
. _  

A --  exp [(--  1)~Zi], ( 6 )  

where k = (Vxi - l)/ai. We term the quantity A the filtration flow parameter. Figure 2 
shows a graph of the function A = f(I~l) constructed on the basis of Eq. (6). On the bound- 
ary between the adjacent filtration flows A = i, and with removal from the boundary the va- 
lue of the filtration flow parameter decreases exponentially, approaching zero. We may 
arbitrarily take for the filtration boundary layer thickness the value 6 i = Izl at which the 
value of the filtration flow parameter becomes sufficiently small and equal to A*, then on 
the basis of Eq. (6) 

6i-----(--1) -1 ] / k i  Df-__!ClnA*. ( 7 )  

F i g u r e  3 shows  t h e  d e p e n d e n c e  o f  f i l t r a t i o n  b o u n d a r y - l a y e r  t h i c k n e s s  c a l c u l a t e d  by  Eq.  
( 7 )  f o r  two v a l u e s  o f  t h e  f i l t r a t i o n  f l o w  p a r a m e t e r ,  0 . 0 5  and  0 . 0 1 .  I t  i s  e v i d e n t  f r o m  t h e  
figure that for filtration flows in slightly permeable porous materials the thickness of the 
filtration boundary layer is relatively small, while for materials with high permeability, 
the thickness of this layer increases significantly, growing with increase in the ratio of 
the flow filtration viscosity to the physical viscosity of the liquid. 

At low permeabilities of the second layer, where k I >> k2, the filtration velocity in 
the latter is negligibly small, and it can be assumed that for the region with low permeabil- 
ity and on the boundary Vx2 = 0. Such a filtration flow is in fact a flow of a liquid in a 
porous material along an impermeable boundary to which the liquid adheres. For these condi- 
tions on the basis of Eqs. (5) and (7), assuming that Vxl = Vx, k I = k, pf~ = ~f; E: = ~ and 
x = 6, we obtain 
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v-x = 1 - -  exp (--z), (8) 

In A*. 8 =-- k ~ (9) 

Equat ion  (8)  may a l s o  be o b t a i n e d  by d i r e c t  s o l u t i o n  of  e q u a t i o n  of  motion (2)  f o r  f i l -  
t r a t i o n  a long  an impermeable p l a n a r  wa l l  w i th  l i q u i d  adhes ion  t h e r e o n .  Equa t ions  (8)  and (9) 
can be used to calculate filtration velocity along an impermeable wall and the thickness of 
the filtration boundary layer only if the permeability of the material is constant down to 
the boundary. 

It should be noted that at present no reliable recommendations are available for deter- 
mining the apparent velocity of the filtering liquid and Eqs. (7) and (9) can be Used to 
evaluate the quantity pf from experimental data determining the thickness of the filtration 
boundary layer. 

It is obvious that if the dimensions of the filtration boundary layer are small enough, 
it can be neglected in calculating volume flow rates in porous materials of large thickness, 
assuming the filtration velocity to be a continuous function near the impermeable wall and on 
the contact boundary between two layers of differing permeability. However, for filtration 
in thin layers of porous material, the thickness of which may be comparable to the dimensions 
of the filtration boundary layer, the presence of this layer must be considered in the calcur 
lations. 

Thus, when performing calculations of concrete filtration flows the thickness of the fil- 
tration boundary layer must be evaluated. The principles obtained herein permit such an 
evaluation, and moreover, can be useful in studying the physical pattern of liquid and gas 
flow in multilayer porous media and in hydrodynamic modeling of equipment utilizing porous 
materials. 

NOTATION 

x, z, Cartesian coordinates~ z, dimensionless coordinate; i = i, 2, porous layer num- 
bers; Vx, filtration velocity; v x, dimensionless filtration velocity; p, pressure; k, perme- 
ability; B, physical viscosity; pf, apparent viscosity of filtering liquid; ~, thickness of 
filtration boundary layer. 
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